Solution For Regular Expression Matching
Problem Statement
Given an input string (s) and a pattern (p), implement regular expression matching with support for ‘.’ and ‘*’.
‘.’ Matches any single character.
‘*’ Matches zero or more of the preceding element.
The matching should cover the entire input string (not partial).
Note:
s could be empty and contains only lowercase letters a-z.
p could be empty and contains only lowercase letters a-z, and characters like . or *.
Example 1:
Input: s = “aa”, p = “a”
Output: false
Explanation: “a” does not match the entire string “aa”.
Example 2:
Input: s = “aab”, p = “cab”
Output: true
Explanation: c can be repeated 0 times, a can be repeated 1 time. Therefore, “cab” matches “aab”.
Solution
To solve this problem, we can use a dynamic programming approach. We can create a two-dimensional boolean array dp, where dp[i][j] represents whether the substring of s from 0 to i-1 can be matched with the substring of p from 0 to j-1.
Here are the steps to fill out the dp array:
- Initialize dp[0][0] as true since an empty string can match another empty string.
- Fill in the first row dp[0][j] according to the pattern. If p[j-1] is ‘‘, then dp[0][j] is equal to dp[0][j-2] (because ”” means zero or more of the preceding element).
- Fill in the first column dp[i][0] as false since a non-empty string cannot match an empty pattern.
- For each dp[i][j], if s[i-1] == p[j-1] or p[j-1] == ‘.’, we can match the characters. Therefore, dp[i][j] is equal to dp[i-1][j-1].
- If p[j-1] == ‘‘, there are two cases to consider:
a) if p[j-2] == s[i-1] or p[j-2] == ‘.’, the ‘‘ can either match zero or more characters. Therefore, we need to check dp[i][j-2] (zero match) or dp[i-1][j] (one or more matches)
b) if p[j-2] != s[i-1], the ‘*’ can only match zero characters. Therefore, dp[i][j] is equal to dp[i][j-2]
Finally, we return dp[m][n], where m and n are the lengths of s and p respectively.
Here is the Python code for the solution:
class Solution:
def isMatch(self, s: str, p: str) -> bool:
m, n = len(s), len(p)
dp = [[False] * (n + 1) for _ in range(m + 1)]
dp[0][0] = True
# Fill in the first row dp[0][j]
for j in range(2, n + 1):
if p[j-1] == '*':
dp[0][j] = dp[0][j-2]
# Fill in the first column dp[i][0]
# (Already initialized as False)
# Fill in the rest of the dp array
for i in range(1, m + 1):
for j in range(1, n + 1):
if s[i-1] == p[j-1] or p[j-1] == '.':
dp[i][j] = dp[i-1][j-1]
elif p[j-1] == '*':
if p[j-2] == s[i-1] or p[j-2] == '.':
dp[i][j] = dp[i][j-2] or dp[i-1][j]
else:
dp[i][j] = dp[i][j-2]
return dp[m][n]
Time Complexity: O(mn), where m and n are the lengths of s and p respectively.
Space Complexity: O(mn), the size of the dp array.
Step by Step Implementation For Regular Expression Matching
public class Solution { public boolean isMatch(String s, String p) { // base case if (p.isEmpty()) return s.isEmpty(); // special case if (p.length() == 1) { // if the length of s is 0, return false if (s.length() < 1) return false; //if the first does not match, return false else if ((p.charAt(0) != s.charAt(0)) && (p.charAt(0) != '.')) return false; // otherwise, compare the rest of the string of s and p. else return isMatch(s.substring(1), p.substring(1)); } // case 1: when the second char of p is not '*' if (p.charAt(1) != '*') { if (s.isEmpty()) return false; if ((p.charAt(0) != s.charAt(0)) && (p.charAt(0) != '.')) return false; else return isMatch(s.substring(1), p.substring(1)); } // case 2: when the second char of p is '*', complex case. else { //case 2.1: a char & '*' can stand for 0 element if (isMatch(s, p.substring(2))) return true; //case 2.2: a char & '*' can stand for 1 or more preceding element, //so try every sub string int i = 0; while (i < s.length() && (s.charAt(i) == p.charAt(0) || p.charAt(0) == '.')) { if (isMatch(s.substring(i + 1), p.substring(2))) return true; i++; } return false; } } }
def isMatch(s, p): # Base Case 1: if both are empty if not s and not p: return True # Base Case 2: if one is empty if not s or not p: return False # match first characters and recur for the remaining if s[0] == p[0] or p[0] == '.': return isMatch(s[1:], p[1:]) # If p's first character is '*', two cases arise: # a) We consider the case where '*' matches with no character in s. # In this case, we recur for p[2:] # b) '*' matches one or more characters in s if p[0]=='*': return isMatch(s, p[2:]) or isMatch(s[1:], p) # If characters don't match return False
var isMatch = function(s, p) { // your code goes here };
class Solution { public: bool isMatch(string s, string p) { // Base case if (p.empty()) return s.empty(); // Special case if (p.size() == 1) { return (s.size() == 1 && (s[0] == p[0] || p[0] == '.')); } // If the second character is not '*' if (p[1] != '*') { if (s.empty()) return false; return (s[0] == p[0] || p[0] == '.') && isMatch(s.substr(1), p.substr(1)); } // If the second character is '*', complex case. while (!s.empty() && (s[0] == p[0] || p[0] == '.')) { if (isMatch(s, p.substr(2))) return true; s = s.substr(1); } // If there is a '*', we can ignore it and the character before it. return isMatch(s, p.substr(2)); } };
public class Solution { public bool IsMatch(string s, string p) { // base case if (p.Length == 0) return s.Length == 0; // special case if (p.Length == 1) { // if the length of s is 0, return false if (s.Length == 0) { return false; } //if the first does not match, return false else if ((p[0] != s[0]) && (p[0] != '.')) { return false; } // otherwise, compare the rest of the string of s and p. else { return IsMatch(s.Substring(1), p.Substring(1)); } } // case 1: when the second char of p is not '*' if (p[1] != '*') { if (s.Length == 0) { return false; } if ((p[0] != s[0]) && (p[0] != '.')) { return false; } else { return IsMatch(s.Substring(1), p.Substring(1)); } } // case 2: when the second char of p is '*', complex case. else { //case 2.1: a char & '*' can stand for 0 element if (IsMatch(s, p.Substring(2))) { return true; } //case 2.2: a char & '*' can stand for 1 or more preceding element, //so try every sub string int i = 0; while (i