Solution For Vertical Order Traversal Of A Binary Tree
Problem statement:
Given a binary tree, return the vertical order traversal of its nodes’ values. (ie, from top to bottom, column by column).
If two nodes are in the same row and column, the order should be from left to right.
Examples:
Example 1:
Input: [3,9,20,null,null,15,7]
3
/ \
9 20
/ \
15 7
Output:
[
[9],
[3,15],
[20],
[7]
]
Explanation:
– The top-down view of the tree is [9], [3,15], [20], [7]
– In the vertical (column) order traversal, we should first visit the leftmost node (9), then the middle column node (3 and 15), and finally the rightmost node (20 and 7).
Example 2:
Input: [1,2,3,4,5,6,7]
1
/ \
2 3
/ \ / \
4 5 6 7
Output:
[
[4],
[2],
[1,5,6],
[3],
[7]
]
Explanation:
– The top-down view of the tree is [4], [2], [1,5,6], [3], [7]
– In the vertical (column) order traversal, we should first visit the leftmost node (4), then the left column node (2), then the middle column node (1, 5, and 6), and finally the rightmost node (3 and 7).
Approach:
To solve this problem, we can use map and queue. We can traverse through the tree level by level using a queue and keep track of the columns using a map.
Let’s say we have a current node with value val and column index col. We can add this node’s value to the column in the map with key col.
- For the left child node, we can add its value to the column col-1.
- For the right child node, we can add its value to the column col+1.
- We also need to keep track of the minimum and maximum column index for all nodes in the tree. This will help us in iterating through the map keys to get the columns in order.
After we have added all the nodes to the map, we can iterate through the map from the minimum column index to the maximum column index and add all the column values to a 2D array, which we will return as the answer.
Solution:
Let’s look at the code for the above approach:
C++ Code:
class Solution {
public:
vector
// Map to keep all nodes' values in their respective columns
map<int, vector<pair<int,int>>> m;
// Queue to traverse the tree level by level
queue<pair<TreeNode*,pair<int,int>>> q;
// Starting from the root node with column index 0 and row index 0
q.push(make_pair(root,make_pair(0,0)));
// Column minimum and maximum values
int colMin = INT_MAX, colMax = INT_MIN;
// Traverse until queue is empty
while(!q.empty()) {
// Get values from front of queue
auto front = q.front();
q.pop();
TreeNode* node = front.first;
int col = front.second.first;
int row = front.second.second;
// Add node to map column
m[col].push_back(make_pair(row,node->val));
// Update column minimum and maximum values
colMin = min(colMin,col);
colMax = max(colMax,col);
// Insert left child to queue
if(node->left) q.push(make_pair(node->left,make_pair(col-1,row+1)));
// Insert right child to queue
if(node->right) q.push(make_pair(node->right,make_pair(col+1,row+1)));
}
// Create result 2D array
vector<vector<int>> res;
// Iterate through columns in map
for(int i=colMin;i<=colMax;i++) {
// Get all nodes of current column
auto colNodes = m[i];
// Sort the nodes based on row and value
sort(colNodes.begin(),colNodes.end());
// Add current column nodes to result row
vector<int> rowNodes;
for(auto p:colNodes) rowNodes.push_back(p.second);
// Add current row to result 2D array
res.push_back(rowNodes);
}
return res;
}
};
Time Complexity:
The time complexity of the above solution is O(nlogn), where n is the number of nodes in the tree. This is because we are iterating through the tree level by level, and sorting the nodes in each column, which takes O(logn) time. Since we do this for all n nodes, the overall time complexity is O(nlogn).
Space Complexity:
The space complexity of the above solution is O(n), where n is the number of nodes in the tree. This is because we are using a map to store all nodes in their respective columns, which could have up to n elements in the worst case. Additionally, we are using a queue to traverse the tree level by level, which could have up to n/2 elements in the worst case. Therefore, the overall space complexity is O(n).
Step by Step Implementation For Vertical Order Traversal Of A Binary Tree
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { public List> verticalOrder(TreeNode root) { // check for empty tree if (root == null) { return new ArrayList<>(); } // create a map to store the vertical order traversal Map
> map = new TreeMap<>(); // create a queue for Breadth First Search Queue queue = new LinkedList<>(); Queue cols = new LinkedList<>(); // start the BFS from the root node queue.add(root); cols.add(0); // run till queue is not empty while (!queue.isEmpty()) { // remove the front element from the queue TreeNode node = queue.poll(); int col = cols.poll(); // if this column is not present in the map, then create a new list if (!map.containsKey(col)) { map.put(col, new ArrayList<>()); } // add the node to the map map.get(col).add(node.val); // if the node has a left child, add it to the queue if (node.left != null) { queue.add(node.left); cols.add(col - 1); } // if the node has a right child, add it to the queue if (node.right != null) { queue.add(node.right); cols.add(col + 1); } } // return the vertical order traversal of the tree return new ArrayList<>(map.values()); } }
from collections import defaultdict # A utility function to create a new node class Node: def __init__(self, key): self.data = key self.left = None self.right = None # Function to Build Tree def buildTree(string): # Corner Case if(string[0] == "N"): return None # Creating list of strings from input # string after spliting by space ip = list(map(str, string.split())) # Create the root of the tree root = Node(int(ip[0])) size = 0 q = [root] # Starting from the second element i = 1 while(size > 0 and i < len(ip)): # Get and remove the front of the queue currNode = q[0] q.pop(0) size = size-1 # Get the current node's value from the string currVal = ip[i] # If the left child is not null if(currVal != "N"): # Create the left child for the current node currNode.left = Node(int(currVal)) # Push it to the queue q.append(currNode.left) size = size+1 # For the right child i = i+1 if(i >= len(ip)): break currVal = ip[i] # If the right child is not null if(currVal != "N"): # Create the right child for the current node currNode.right = Node(int(currVal)) # Push it to the queue q.append(currNode.right) size = size+1 i = i+1 return root def verticalOrder(root): # Base case if root is None: return # Create empty queues for # level order traversal dict = defaultdict(list) #dictionary that stores the nodes at each horizontal distance hd = 0 #horizontal distance of the root queue = [] #queue for level order traversal # Enqueue Root and initialize HD as 0 queue.append(root) while(len(queue) > 0): # Extract the node at the front of # the queue and its horizontal # distance from the root temp = queue.pop(0) hd = temp.hd # Add the extracted node to the # dictionary dict dict[hd].append(temp.data) # Enqueue left and right children if temp.left: temp.left.hd = hd-1 queue.append(temp.left) if temp.right: temp.right.hd = hd+1 queue.append(temp.right) # Traverse the dictionary and print nodes at # each horizontal distance (hd) for index, value in sorted(dict.items()): for i in value: print(i, end=" ") print() if __name__ == '__main__': t = int(input()) for i in range(t): string = input() root = buildTree(string) verticalOrder(root) print()
/** * Definition for a binary tree node. * function TreeNode(val) { * this.val = val; * this.left = this.right = null; * } */ /** * @param {TreeNode} root * @return {number[][]} */ var verticalOrder = function(root) { if(!root) return []; let map = {}; let queue = [[root, 0]]; let min = 0; let max = 0; while(queue.length) { let [node, col] = queue.shift(); if(!map[col]) map[col] = [node.val]; else map[col].push(node.val); min = Math.min(min, col); max = Math.max(max, col); if(node.left) queue.push([node.left, col - 1]); if(node.right) queue.push([node.right, col + 1]); } let ans = []; for(let i = min; i <= max; i++) { ans.push(map[i]); } return ans; };
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} * }; */ class Solution { public: vector> verticalTraversal(TreeNode* root) { // Base case if (!root) { return {}; } // Result vector vector > res; // Queue for BFS queue > q; // Map for storing the nodes at each horizontal distance map > m; // Variable for tracking the minimum horizontal distance int min_hd = 0; // Variable for tracking the maximum horizontal distance int max_hd = 0; // Enqueue the root node with horizontal distance as 0 q.push({root, 0}); // Loop while queue is not empty while (!q.empty()) { // Get the size of the queue int size = q.size(); // Set of values at each horizontal distance // This is required to maintain the order of nodes at same horizontal distance map > temp; // Loop through all the nodes in the queue for (int i = 0; i < size; i++) { // Dequeue a node from the queue auto node = q.front(); q.pop(); // Get the horizontal distance of the dequeued node int hd = node.second; // Get the value of the dequeued node int val = node.first->val; // Insert the value in the set at the horizontal distance temp[hd].insert(val); // Update the minimum horizontal distance min_hd = min(min_hd, hd); // Update the maximum horizontal distance max_hd = max(max_hd, hd); // If the dequeued node has a left child, enqueue it if (node.first->left) { q.push({node.first->left, hd - 1}); } // If the dequeued node has a right child, enqueue it if (node.first->right) { q.push({node.first->right, hd + 1}); } } // Loop through the map to insert the nodes at each horizontal distance in the result vector for (int i = min_hd; i <= max_hd; i++) { res.push_back({temp[i].begin(), temp[i].end()}); } } return res; } };
/** * Definition for a binary tree node. * public class TreeNode { * public int val; * public TreeNode left; * public TreeNode right; * public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) { * this.val = val; * this.left = left; * this.right = right; * } * } */ public class Solution { public IList> VerticalTraversal(TreeNode root) { //Create a dictionary to store the vertical order traversal Dictionary > dict = new Dictionary >(); //Create a queue to do a level order traversal Queue queue = new Queue (); Queue cols = new Queue (); //Start the traversal from the root node queue.Enqueue(root); cols.Enqueue(0); //Loop through the queue while it's not empty while(queue.Count != 0){ //Get the size of the queue int size = queue.Count; //Create a list to store the nodes at the same horizontal distance List list = new List (); //Loop through the queue for(int i = 0; i < size; i++){ //Get the node at the front of the queue TreeNode node = queue.Dequeue(); //Get the column value of the node int col = cols.Dequeue(); //Check if the column value is in the dictionary if(!dict.ContainsKey(col)){ //If it's not, add it to the dictionary dict.Add(col, new List ()); } //Add the node to the list list.Add(node.val); //Check if the node has a left child if(node.left != null){ //If it does, add it to the queue queue.Enqueue(node.left); //Add the column value - 1 to the queue cols.Enqueue(col - 1); } //Check if the node has a right child if(node.right != null){ //If it does, add it to the queue queue.Enqueue(node.right); //Add the column value + 1 to the queue cols.Enqueue(col + 1); } } //Add the list of nodes to the dictionary dict.Add(col, list); } //Create a list to store the final result List > result = new List >(); //Loop through the dictionary foreach(var key in dict.Keys){ //Add the list of nodes at the same horizontal distance to the final result result.Add(dict[key]); } //Return the final result return result; } }